
KI-Modelle, die dabei helfen, Aufgaben automatisch zu erledigen, basieren meist auf bereits vorhandenen allgemeinen KI-Modellen. Diese allgemeinen KI-Modelle werden dann so trainiert, dass sie sich auf eine bestimmte Aufgabe konzentrieren. Ein medizinisches Unternehmen kann beispielsweise ein Modell mithilfe einer großen Sammlung von Millionen MRT-Bildern trainieren, damit das Modell lernt, Krebszellen zu erkennen. Oder ein Fernsehsender kann ein Modell mit Millionen von Videos zu Fußballspielen trainieren, um darin Szenen mit Toren, speziellen Spielern oder Elfmetern zu erkennen. Ein solches trainiertes Modell kann es möglich machen, sehr schnell einen bestimmten Schuss in Millionen Minuten an Spielen zu finden. In der Praxis beruht der Erfolg beim Training eines KI-Models jedoch nicht auf dem Modell selbst, sondern eher auf der Qualität der Daten, mit denen das Modell trainiert wurde.